

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY

(A State University Estb. by Govt. of Punjab vide Punjab Act No. 5 of 2015 and Approved u/s 2(f) & 12 (B) of UGC; Member AIU)

Bathinda-151001 (Punjab), India

Department: Department of Physics, Maharaja Ranjit Singh Punjab Technical University, Bathinda

Program: <u>B.Sc. (Hons.)Physics</u>

Course Articulation Matrics

Subject	S Code	Semester	Credit	Duration (Hrs)	LTP	Cos	Statement	PO1	P02	PO3	PO4	PO5	90d	P07	P08
Electricity and Magnetism	BPHYS1-101	1	4	60	400	CO1	Understanding the concepts of electric field, magnetic field, magnetic properties of matter, electromagnetic potentials, dielectric and induction and electric circuits.	3	2	1	2	2	2	2	3
Elec Ma	BPE					C02	Skill enhancement to solve numerical problems related with Electricity and Magnetism.	2	3	2	3	1	1	2	2

						CO3	Apply knowledge of Electricity and Magnetism to go for higher studies in diverse fields.	2	2	1	2	2	1	3	2
						CO4	To inculcate and develop the ability to think abstractly.	2	3		2	2	1	2	2
m Lab						C01	Able to verify the concepts/laws of Electricity and Magnetism.	3	2	3	2	2	2	2	1
Electricity and Magnetism Lab	BPHYS1-104	1	2	60	0.4	C02	To inculcate and develop scientific aptitude by performing the various experiments.	2	1	3	2	2	1	2	2
city and	ВРНҮ	1	_		0	03	Skill enhancement by solving experimental problems.	1	2	1	2	2	2	2	2
Electric						C04	To inculcate the spirit of team work.	1	2	2	2	1	2	2	3
						CO1	Understanding the concepts of fundamentals of dynamics, gravitation and central force motion, oscillations, and special theory of relativity.	3	2	1	2	2	2	2	3
Mechanics	BPHYS1-102	1	4	60	4 0 0	C02	To analyse and solve numerical problems in mechanics.	2	3	2	3	1	1	2	2
Me	ВРН				7	CO3	Apply knowledge of Mechanics to go for higher studies in diverse fields.	2	2	1	2	2	1	3	2
						C04	To inculcate and develop the ability to think abstractly.	2	3	1	2	2	1	2	2
Mech anics	BPHY S1-	1	2	60	004	001	Able to verify the concepts/laws of Mechanics.	3	2	3	2	2	2	2	1

						C02	To inculcate and develop scientific aptitude by performing the various experiments.	2	1	3	2	2	1	2	2
						03	Skill enhancement by solving experimental problems.	1	2	1	2	2	2	2	2
						CO4	To inculcate the spirit of teamwork.	1	2	2	2	1	2	2	3
SI						C01	Able to understand the concept of computational Physics.	3	2	3	2	2	2	2	1
Computational Physics Skills			2	60	4	C02	To inculcate and develop scientific aptitude.	2	1	3	2	2	1	2	2
ational P	-108	1	2	60	0 0	03	Skill enhancement by solving numerical problems.	1	2	1	3	2	2	2	2
Comput	BPHYS1-108					C04	To inculcate the spirit of teamwork.	1	2	2	2	1	2	2	3
						001	To understand the concepts related to Thermal Physics and their applications.	3	2	1	2	2	2	2	3
		2	4	60		C02	Skill enhancement to solve numerical problems related with the laws of thermodynamics, entropy, and Maxwell's thermodynamic relations.	2	3	2	3	1	1	2	2
Thermal Physics	BPHYS1-201					603	Apply knowledge of Thermal Physics to go for higher studies in diverse fields.	2	2	1	2	2	1	3	2
Therma	ВРНҮ				400	CO4	To inculcate and develop the ability to think abstractly.	2	3	1	2	2	1	2	2

						001	To understand the concepts related to Thermal Physics and their applications.	3	2	3	2	2	2	2	1
ıysics Lab	1-204				4	C02	Practical knowledge of concepts of Thermodynamics.	2	1	3	2	2	1	2	2
Thermal Physics Lab	BPHYS1-204	2	2	60	0 0	603	To inculcate and develop scientific aptitude by performing the various experiments.	1	2	1	2	2	2	2	2
F						C04	Learn to draw conclusions from data and develop skills in experimental design.	1	2	2	2	1	2	2	3
cs						100	Understanding the concepts of harmonic oscillations, wave motion, wave optics, interference and diffraction.	3	2	1	2	2	2	2	3
Waves and Optics	BPHYS1-202	2	4	60	4 0 0	003	Skill enhancement to solve numerical problems related with Waves and Optics.	2	3	2	3	1	1	2	2
Waves	BPH				7	٤٥٥	Apply knowledge of Waves and Optics to go for higher studies in diverse fields.	2	2	1	2	2	1	3	2
						604	To inculcate and develop the ability to think abstractly.	2	3	1	2	2	1	2	2
ptics	505					001	Able to verify the concepts/laws of Waves and Optics	3	2	3	2	2	2	2	1
Wavesand Optics Lab	BPHYS1-205	2	2	60	004	C02	To inculcate and develop scientific aptitude by performing the various experiments.	2	1	3	2	2	1	2	2
Wa	B					603	Skill enhancement by solving experimental problems.	1	2	1	2	2	2	2	2

						C04	To inculcate the spirit of teamwork	1	2	2	2	1	2	2	3
lications						CO1	Understanding the constitution of semiconducting diode, its types like LED, Zener diode, photodiode solar cell etc. and use of diodes as rectifiers.	2	1	3	3	3	3	2	3
Analog System and Applications	BPHYS1-301	3	4	60	400	C02	In depth understanding to use Bipolar Junction Transistor in various configurations and its respective characteristics.	3	1	3	3	1	3	1	2
g Syste	BPF					603	Learning the use of Coupled Amplifier and its characteristics.	3	1	2	1	1	3	3	3
Analc						004	Applications of Operational Amplifier in Analog systems.	3	1	3	1	1	2	3	3
ns Lab						C01	Power Supply and the role of Capacitance and Inductance filters.	1	1	3	2	1	1	1	1
Analog System and Applications Lab		3	2	60	004	CO2	Hands on in finding the characteristics of various semiconductors like diode, transistor, JFET, MOSFET, Tunnel Diode etc.	3	2	2	3	1	1	3	3
System an	31-305				0	03	Realization of characteristics of BJTs by performing experiments.	1	1	1	3	1	1	3	2
Analog 5	BPHYS1-305					C04	Learning use of OpAmp in Adder, Subtractor, Differentiator and Integrator.	3	2	2	2	3	3	2	2
Ele	BPH	3	4	60	400	001	Understanding the basic concepts in the development of modern physics.	3	2	1	1	1	2	3	1

						C02	To establish the basic foundation of students to study the advance level course like quantum physics, particle physics and high energy physics.	3	2	1	3	1	1	2	1
						003	Skill enhancement to solve numerical problems related with basic quantum, nuclear and particle physics.	1	3	1	2	1	1	2	1
					•	CO4	To provide the knowledge of the state-of-the-art of modern days lasers and their applications in daily life.	3	2	2	2	2	3	3	2
s Lab						CO1	Able to verify the concepts/laws of basic quantum, nuclear and particle physics.	3	2	3	2	2	2	2	1
Elements of Modern Physics Lab	/S1-306	3	2	60	0.4	CO2	To inculcate and develop scientific aptitude by performing the various experiments.	2	1	3	2	2	1	2	2
ts of Mod	BPHYS1				0	03	Skill enhancement by solving experimental problems.	1	2	1	2	2	2	2	2
Elemen						C04	To inculcate the spirit of teamwork.	1	2	2	2	1	2	2	3
Quant	BPH VS1	3	4	60	400	CO1	Understanding of Time independent and Time dependent Schrodinger equations and their applications.	3	2	1	2	2	2	2	3

						C02	Skill enhancement to solve numerical problems related with Quantum Mechanics.	2	3	2	3	1	1	2	2
						03	Apply knowledge of Quantum Mechanics to go for higher studies in diverse fields.	2	2	1	2	2	1	3	2
						004	To inculcate and develop the ability to think abstractly.	2	3	1	2	2	1	2	2
						CO1	Secure first-hand idea of different components including both active and passive components to gain an insight into circuits using discrete components and also to learn about integrated circuits.	3	1	3	1	2	2	3	3
Digital System and Applications	BPHYS1-401	4	4	60	400	CO2	About analog systems and digital systems and their differences, fundamental logic gates, combinational as well as sequential and number systems.	3	3	3	2	3	1	1	3
Digital Systen	ВРН				7	CO3	Synthesis of Boolean functions, simplification and construction of digital circuits by employing Boolean algebra.	2	3	1	1	1	3	2	3
						CO4	Sequential systems by choosing FlipFlop as a building bock-construct multivibrators, counters to provide a basic idea about memory including RAM,ROM and also about memory organization.	2	3	3	1	3	3	3	2

						CO1	Learning logic GATES and their realization using diodes and transistors.	2	2	1	2	1	3	3	3
ions Lab	1-404	•			1 4	C02	FlipFlop as a building block about memory including RAM,ROM	2	3	1	2	2	1	3	1
Digital System and Applications Lab	BPHYS1-404	4	4	60	0 0	£00	Microprocessor and assembly language programming with special reference to Intel μP 8085.	1	2	1	1	2	1	3	3
Digital Syster						604	Learning Adders, Subtractors, Shift Registers, and multivibrators using 555 ICs.	1	1	3	2	2	1	1	3
sics						CO1	A brief idea about lattice, unit cell, miller indices, reciprocal lattice, concept of Brillouin zones and diffraction of X-rays by crystalline materials.	2	2	3	1	ω	1	3	3
Solid State Physics	BPHYS1-402	4	4	60	400	C02	Knowledge of lattice vibrations, phonons and in depth of knowledge of Einstein and Debye theory of specific heat of solids.	2	2	3	1	2	1	1	1
0,						CO3	Understanding above the band theory of solids and must be able to differentiate insulators, conductors, and semiconductors.	3	3	3	2	1	1	1	1

						CO4	Secured an understanding about the magnetic, dielectric and superconducting phases of the materials.	3	2	3	2	2	3	3	3
						CO1	Learning characteristics of LED, phot-diode, solar cell etc.	3	2	2	2	2	3	1	1
Physics Lab	1-405			60		C02	Characterization of material properties like: magneto-resistive, M(H), Ten Delta, Curie temperature etc.	3	2	1	1	3	3	3	3
Solid State Physics Lab	BPHYS1-405	4	2	60		03	Use of X-Ray diffraction tool for crystal structure analysis of the material.	3	1	1	2	3	1	1	2
					004	C04	Acquaintance with thin film preparation techniques.	3	2	1	2	1	2	2	2
on of India on of India.	BMNCC0-001	4		30	0.0	C01	Understanding the meaning, emergence, evolution and structure of Constitution of India.		1		1	2			2
Constitution of India Constitution of India	BMNC	4		30	2.0	C02	Know their fundamental rights and duties and directive principles of state policy.	1	1	1	2	3	3	3	3

						603	Will know the organs of governance with detailed study of Indian parliament, its composition and working. Also gain the knowledge of judiciary system, its powers and functions.	1	1	1	2	3	2	2	3
						604	Acquire the understanding of aims and decentralization in India by explaining about the uses of Panchayath Raj system in India and its duties.	1	1	1	2	3	3	2	3
						100	Understand the concepts related with complex analysis, vector differentiation, vector integration and tensors.	3	2	1	2	2	2	2	3
Mathematical Physics – I	3PHYS1-501	5		00	2.0	700	Skill enhancement to solve numerical problems related with Mathematical Physics.	2	3	2	3	1	1	2	2
Mathematic	ВРНҮЅ	5	6	90	4 2	800	Apply knowledge of Mathematical Physics to go for higher studies in diverse fields.	2	2	1	2	2	1	3	2
						C04	To inculcate and develop the ability to think abstractly.	2	3		2	2	1	2	2
Statistical Mechanics	BPHYS1-502	5	4	60	400	CO1	Understand the concepts of microstate, macrostate, phase space, thermodynamic probability, partition function, properties and Laws associated with thermal radiations and kinetic theory of gases.	3	2	1	2	2	2	2	3

						C02	Skill enhancement to solve numerical problems related with Statistical Mechanics.	2	3	2	3	1	1	2	2
						£00	Apply knowledge of Statistical Mechanics to go for higher studies in diverse fields.	2	2	1	2	2	1	3	2
						C04	To inculcate and develop the ability to think abstractly.	2	3	1	2	2	1	2	2
						100	Able to understand computationally and experimentally the various Statistical mechanics problems.	3	2	3	2	2	2	2	1
Statistical Mechanics Lab	BPHYS1-503	5	2	60	0 4	C03	To inculcate and develop scientific aptitude by performing the various experiments.	2	1	3	2	2	1	2	2
Statistical M	ВРНҮЗ	3	2	80	00	603	Learn to draw conclusions from data and develop skills in experimental design.	1	2	1	2	2	2	2	2
						C04	To inculcate the spirit of team work.	1	2	2	2	1	2	2	3

						CO1	Basic knowledge of sensitivity and resolution of instrument with processing of error in measurement which is essential of instrument operation.	3	3	3	3	1	3	1	3
Basic Instrumentation Skills	3PHYS1-504	5	2	60	0 4	C02	Operational knowledge of CRO with its applications towards measuring different type of ac and dc signals.	3	2	2	2	1	2	1	3
Basic Instrum	ВРНҮ	•	_		0	C03	Knowledge of generating and testing different type of signals using signal generator and their analysis.	2	3	2	3	3	3	1	2
						C04	Conceptual knowledge of different type of LCR bridges and their balancing applications.	2	3	2	3	1	2	1	2
olications						C01	Understanding the Nano systems and its implications in modifying the properties of materials at the nanoscale.	3	3	3	2	1	2	2	3
Nano Materials and Applications	BPHYD1-513	5	4	60	400	CO2	Concept of Quantum confinement, 3D,2D,1D and 0D nanostructure with examples.	3	3	3	1	3	1	1	3
Nano Ma						CO3	Different synthesis techniques including top down and bottom-up approaches.	3	3	3	3	2	1	3	3

						CO4	Applications of nanostructured materials in making devices namely MEMS, NEMS and other heterostructures for solar cell and LEDs.	3	1	2	2	1	2	3	1
Lab						CO1	Student shall gain expertize in synthesis of nano-particles by chemical route.	3	1	1	1	2	1	3	3
d Applications	3PHYD1-514	-		60	0 4	C02	Use of X-Ray diffraction tool for crystal structure analysis of the material.	2	2	1	1	1	1	1	2
Nano Materials and Applications Lab	ВРНУБ	5	2	60	00	CO3	Acquaintance with thin film preparation techniques.	2	3	3	2	1	3	3	2
Nan						C04	Use of UV visible spectrometer for analysis of nano-particles.	1	1	3	1	3	1	2	3
Mathematical Physics-II	3PHYS1-601	6	6	90	2.0	100	Understand the concepts related with Frobenius method, theory of errors and special functions and integrals, and group theory.	3	2	1	2	2	2	2	3
Mathematic	ВРНҮЅ	В	6	90	4 2	C02	Skill enhancement to solve numerical problems related with Mathematical Physics.	2	3	2	3	1	1	2	2

						603	Apply knowledge of Mathematical Physics to go for higher studies in diverse fields.	2	2	1	2	2	1	3	2
						CO4	To inculcate and develop the ability to think abstractly.	2	3	1	2	2	1	2	2
>						CO1	Understand the concepts related with Maxwell's equations, propagation of EM waves, polarization, production and detection of EM waves, and optical fibres.	3	2	1	2	2	2	2	3
Electromagnetic Theory	зРНҮЅ1-602	6	4	60	400	C02	Skill enhancement to solve numerical problems related with Electromagnetic Theory	2	3	2	3	1	1	2	2
Electrom	BPI					603	Apply knowledge of Electromagnetic Theory to go for higher studies in diverse fields.	2	2	1	2	2	1	3	2
						604	To inculcate and develop the ability to think abstractly.	2	3	1	2	2	1	2	2
Electroma gnetic Theory Lab	BPHYS1- 603	6	2	60	004	C01	Able to understand computationally and experimentally the various concept of electromagnetic theory.	3	1	1	1	2	1	3	3

						C02	To inculcate and develop scientific aptitude by performing the various experiments.	2	2	1	1	1	1	1	2
						603	Learn to draw conclusions from data and develop skills in experimental design.	2	3	3	2	1	3	3	2
						C04	To inculcate the spirit of team work.	1	1	3	1	3	1	2	3
×						CO1	Understanding of basic properties of nuclei like nuclear size, shape, mass, binding energy and nuclear stability etc through various nuclear models and potentials associated with them.	3	2		2		3	2	1
Nuclear and Particle Physics	3PHYD1-521	5	4	60	400	C02	Learn the processes and conditions of nuclear reactions with emphasis on beta and gamma decays.	3	2	2			2	3	
Nuclear and	ВРНУ				4	603	Acquire an understanding of how nuclear radiations interact with matter and theoretical knowledge of nuclear detectors used for nuclear radiation measurements.	3	2	1	2	1	2	2	1
						C04	A brief introduction of elementary particle physics that would motivate the students for higher studies in the field of high energy physics.	3			1	1	2	3	

						CO1	To provide knowledge of physics behind the working mechanisms of different organs in human body.	3			3		3	3	
cs						C02	Understanding the impact of radiation exposure to human body. Use of radiation dosimeters, radiation detectors/instrumentations for radiation monitoring.	2	2	1	3	1	3	3	2
Medical Physics	ВРНҮD1-621	6	4	60	400	03	Use of X-rays for medical diagnosis and application of radiations for therapeutic uses.	2	2		3	2	3	3	2
						CO4	Acquiring the knowledge of medical imaging, physical principles of diagnostic radiology, image quality and quality assurance.	2	2	1	3	2	3	3	2
Medical Physics Lab	1-622		2	60	004	CO1	Able to use and measure manual Hg blood pressure monitor and optical eye-testing machine.	2	3	3		3	3	3	2
Medical PI	BPHYD1-622	6	2	60	00	C02	To inculcate and develop scientific aptitude by performing the various experiments.	1	3	3	1	3	3	2	3

						603	Learn to use combination of lenses on an optical bench and draw conclusions from data and develop skills in experimental design.		3	3		3	3	3	3
						CO4	To inculcate the spirit of teamwork.	1	1		2		1		3
						CO1	Understand the fundamental Laws of motion and apply Lagrangian& Hamiltonian formulations to the motion of particles.	3	2	1			2	3	2
Classical Dynamics	ВРНҮD1-611	6	6	90	420	700	Gain the fundamental knowledge of rotational motion and solve the numerical problem in spherical and cylindrical coordinates for kinetic energy and moment of inertia of rotating bodies.	3	3	1	1		2	3	2
Classic	BPI					800	Learn the theory of small oscillations in detail along with basis of free vibrations.	3	2	1	1		2	3	2
						C04	Course will build a foundation of students for higher studies in diverse fields.	3					1		1
Communicati on Systems	BPHYD1-515	5	4	60	400	CO1	Understand the fundamentals of communication systems and to perform amplitude and angle modulation and demodulation of analog signals		2	3			1	2	2

						C02	Perform and analyze angle modulation i.e. PAM, PCM and PWM	1	2	3	1		2		1
						٤٥٥	Understand and solve problems related to digital modulation (FDM and TDM) systems.	1	2	3	1		2		1
						C04	Design and conduct experiments, using modern communication tools necessary for various engineering applications.	1	3	3	3	1	3	2	2
						CO1	Able to understand computationally and experimentally the various concepts of Quantum mechanics.	3	2	3	2	2	2	2	1
Communication Systems Lab	3PHYD1-516	5	2	60	0 4	C02	To inculcate and develop scientific aptitude by performing the various experiments.	2	1	3	2	2	1	2	2
Communicatic	ВРНУС	3	2	00	00	603	Learn to draw conclusions from data and develop skills in experimental design.	1	2	1	2	2	2	2	2
						C04	To inculcate the spirit of teamwork.	1	2	2	2	1	2	2	3

							To implement the idea of system of linear equations	2	3			
Mathematics-I	ВМАТН5-101	1	4	60	0		Use vector and scalar product in terms of area and volume	3	2	1		
Mather	BMAT	1	4	60	31		To implement the idea of vector differentiation, divergence and curl of vector field	2	3	2		
							To implement the idea of vector integration with theorems	2	2	1	1	
I-so						CO1	Get knowledge about the basic concept of limit continuity	2	3			
Basic Mathematics-I	BMATH5-102	1	4	60	3 1 0	C02	To determine the nth derivative of well-known functions	3	2	1	1	
Ba						03	Tracing of Cartesian curves, parametric and polar curves	2	3	2		

						CO4	Able to solve applications of definite integral		2		2	1	
						001	The completion of this course will make student to acquire the knowledge of:	1		1	3		
ry -I						C02	Wave mechanics, atomic theories and shapes of orbitals	1		1	3		
Inorganic Chemistry -I	(BCHMS1-101)	1	4	60	400	603	Periodic table and various periodic properties	1		1	3		
Inor						C04	Ionic bond, covalent bond, metallic bond and various weak chemical forces	1		1	3		
							Redox reactions and applications of redox reactions						
Inorganic Chemistry	(BCHMS1- 103)	1	2	30	002	C01	Preparation of solutions	1		3	1		

						C02	Estimation of carbonates, bicarbonates and free alkalis in solution with acid base titrations	1	3	1		
						£00	Estimation of Fe(II) and oxalic acid with oxidation reduction titrimetry	1	3	1		
						CO4	Estimation of Fe(II) and oxalic acid with oxidation reduction titrimetry	1	3	1		
						CO1	Kinetic modular model of gases, behaviour of ideal and real gases.	1	1	3		
nemistry -l	51-102)	3		60	0.0	C02	Concept of equilibrium, its types and the factors affecting the state of equilibrium	1	1	3		
Physical Chemistry -l	(BCHMS1-102)	3	4	60	4 0	800	Different type of crystal systems, Bragg's law and Miller indices.	1	1	3		
						CO4	Comparison of the behaviour of ideal and real gases.	1	1	3		

						CO1	Surface tension and Viscosity measurement	1	3	1		
nistry lab I		3	2	30	002	C02	Preparation of buffer solution	1	3	1		
Physical Chemistry lab I	BCHMS1-104)					CO3	pH metric titrations.	1	3	1		
						CO1	Stereochemistry concepts	1	1	3		
Organic Chemistry -I	(BCHMS1-201)	2	4	60	400	C02	Reaction intermediates, electronic effects and types of reactions	1	1	3		
Organic Cl	(вснм	2	4	00	4 (CO3	Formation of carbon-carbon sigma and pi bonds	1	1	3		
						CO4	Conformational analysis of cycloalkanes	1	1	3		

lab I	_					CO1	Purification of organic compound using various solvent combinations	1	3	1		
Organic Chemistry lab	BCHMS1-203)	3	2	30	002	C02	Determination of melting and boiling points of various organic compound	1	3	1		
Organ	B					603	Chromatographic techniques	1	3	1		
						CO1	Systematic knowledge of concepts of thermodynamics and able to identify and describe energy exchange processes.	1	1	3		
emistry -II)	(BCHMS1-202	4	4	60	0 0	C02	Concept of chemical equilibrium, and the factors affecting the state of equilibrium	1	1	3		
Physical Chemistry -II)	(BCHM	4	4	60	4 (603	Variation of system properties with composition.	1	1	3		
						CO4	Solutions and their properties.	1	1	3		