Ph. D Entravel Text - Jan 21 (Mathematics)

- 1. The number of idempotent elements in a group is
- a) Always even
- b) Always odd greater than one
- c) Always an odd prime
- d) Only one
- 2. The set of integers with operation * defined by a*b=a+b+1 is given to be a group. The identity of this group is:
- a) 1
- b) 0
- c) -1
- d) 2
- 3. Let G be a non abelian group. Then its order can be
- a) 25
- b) 55
- c) 65
- d) 35
- 4. Which of the following can be the class equation of a group of order 10?
- a) 1+1+1+2+5=10
- b) 1+2+3+4=10
- c) 1+2+2+5=10
- d) 1+1+2+2+2=10
- 5. Let A be a 3×3 matrix whose characteristic roots are 3, 2, -1. If $B=A^2-A$, then |B| is
- a) 24
- b) -2
- c) 12
- d) -12
- 6. The eigen values of the matrix of the quadratic form associated with the quadratic equation $9x^2 4xy + 6y^2 10x 20y = 5$ are
- a) 1, 2
- b) 2, 5
- c) 5, 10
- d) -5, 10
- 7. Which one of the following form a basis for the vector space \Re^3 :
- a) (1,1,1) and (1,-1,5) (1, 1, 1)
- b) (1,2,3), (1,0,-1), (3,-1,0) and (2,1,-2)

- c) (1,2,5), (1,1,4) and (2,4,10)
- d) (1,1,1), (1,2,3) and (2,-1,1)
- 8. If S and T are linear operators on \Re^2 defined by S(x,y) = (0,x) and T(x,y) = (x,0) then:
- a) ST = 0
- b) $TS \neq 0$
- c) S + T = 0
- d) TS = 0
- 9. Which of the following statements is not true:
- a) The set of natural numbers is order-complete
- b) The set of integers is order-complete
- c) The set of rational numbers is order-complete
- d) The set of real numbers is order complete
- 10. The series $\sum \frac{(-1)^{n+1}}{n^p}$ is
- a) absolutely convergent for every p
- b) absolutely convergent for p < 1
- c) absolutely convergent for p = 1
- d) absolutely convergent for p > 1 but conditionally convergent for 0
- 11. The function f defined by $f(x) = \begin{cases} x, x \text{ is irrational} \\ -x, x \text{ is rational} \end{cases}$ is
- a) continuous for every real x
- b) continuous when x is rational
- c) continuous when x is irrational
- d) continuous only at x = 0
- 12. The sequence $\left\langle \frac{nx}{1+n^3x^2} \right\rangle$ converges uniformly to zero
- a) only for 0 < x < 1
- b) only for $0 \le x < 1$
- c) only for $0 < x \le 1$
- d) for $0 \le x \le 1$
- 13. The number $\sqrt{2}e^{i\pi}$ is
- a) A rational number
- b) An imaginary number
- c) An irrational number
- d) A Transcendental number
- 14. The function $f(z) = \log(z^2 + z 2)$ has branch points at
- a) z = 1, z = -1

c)
$$z = 1, z = -2$$

d) None of these

15. Critical points of the bilinear transformation $w(z) = \frac{az+b}{cz+d}$ are

a)
$$z = -\frac{d}{c}, z = 0$$

b)
$$z = -\frac{d}{c}, z = \infty$$

c)
$$z=0, z=\infty$$

d)
$$z = -\frac{d}{c}$$
, $z = -\frac{b}{a}$

16. If z_1, z_2, z_3, z_4 are distinct points in the order in which they are written, then the number of distinct cross ratios are

- a) 4!
- b) 44
- c) 6
- d) 1

17. The solution of $\frac{dy}{dx} = y^2$, y(0) = 1 exists for all

a)
$$x \in (-\infty, 1)$$

b)
$$x \in [0, a]$$
 where $a > 1$

c)
$$x \in (-\infty, \infty)$$

d)
$$x \in [1, a]$$
 where $a > 1$

18. If e^{-x} , xe^{-x} are solutions of y' + ay' + by = 0, then

a)
$$a = 0, b = 1$$

b)
$$a = 1, b = 2$$

c)
$$a = 2, b = 1$$

d)
$$a = -1, b = 0$$

19. General solution of the partial differential equation $(y^2 + z^2 - x^2)p - 2xyq + 2xz = 0$ is

a)
$$\phi \left[\frac{y}{z}, \frac{x^2 + y^2 + z^2}{z} \right] = 0$$

b)
$$\phi \left[\frac{x}{z}, \frac{x^2 + y^2 + z^2}{y} \right] = 0$$

c)
$$\phi \left[\frac{y}{z}, \frac{x^2 - y^2 + z^2}{z} \right] = 0$$

d)
$$\phi \left[\frac{x}{z}, \frac{x^2 - y^2 + z^2}{z} \right] = 0$$

- 20. Let W be the wronskian of two linearly independent solutions of ODE $2y'' + y' + t^2y = 0$; $t \in R$. Then, for all t, there exists a constant C $\in \mathbb{R}$ such that W(t) is
- a) Ce^{-t}
- b) $Ce^{-\iota/2}$
- c) Ce^{2t}
- d) Ce^{-2t}
- a) Y is bounded on R
- b) $\lim_{x\to\infty} e^{-x} y(x) = \frac{1}{4}$
- c) $\lim_{x\to\infty} e^x y(x) = \frac{1}{4}$
- d) None of these
- 22. The value of constant α in the third order Runga-Kutta method $u_{j+1} = u_j + \frac{1}{8}(2k_1 + \alpha k_2 + 3k_3)$ is
- a) 3
- b) 4
- c) 2
- d) 1
- 23. Which of the following method always converges to root of equation f(x) = 0?
- a) Newton Raphson method
- b) Regula False method
- c) Secant Method
- d) All of Above
- 24. Every discrete topological space is:
- a) First countable
- b) Second countable
- c) Connected
- d) Compact

- a) Path connected
- b) not connected
- c) Countable
- d) connected but not path connected

26. A simple pendulum is suspended with a moving support, the constraints involved are

- a) Holonomic
- b) Non-holonomic
- c) Scleronomic
- d) Rheonomic

27. In a two-body equivalent to a single body problem, if μ is the reduced mass of the system with masses m_1 and m_2 , then μ is given by

a)
$$\mu = \frac{m_1^2 + m_2^2}{2}$$

b)
$$\mu = \frac{m_1 + m_2}{2}$$

c)
$$\mu = \sqrt{m_1 m_2}$$

d) None of these

28. Green Theorem gives the relation between

- a) Line and double integral
- b) Line and surface integral
- c) Double and volume integral
- d) None of these

29. Fredholm equation of First kind is

a)
$$y(x) = f(x) + \lambda \int_{a}^{b} k(x,t)y(t)dt$$

b) $f(x) + \lambda \int_{a}^{b} k(x,t)y(t)dt = 0$

b)
$$f(x) + \lambda \int_{a}^{b} k(x,t)y(t)dt = 0$$

- d) None of these
- 30. In Fourier Transform problems if $u(x,t)_{x=0}$ is given then to remove $\frac{\partial^2 u}{\partial x^2}$ form the equation we use
- a) Infinite Cosine Transform
- b) Infinite Sine Transform
- c) Finite Sine Transform
- d) Finite Cosine Transform
- 31. Laplace transformation of F(t); t > 0 is defined as

a)
$$\int_{0}^{1} e^{-st} f(s) ds$$

b)
$$\int_{0}^{\infty} e^{-st} F(t) dt$$

c)
$$\int_{-\infty}^{\infty} e^{-st} F(t) ds$$

- d) None of these
- 32. Which of the following is true regarding the multiplication law of probabilities:

a)
$$P(A \cap B) = P(A) P(B)$$

b)
$$P(A \cap B) = P(B) P(B/A)$$

c)
$$P(A \cap B) = P(A) P(B/A)$$

d)
$$P(A \cap B) = P(A) P(A/B)$$

- 33. Choose the correct statement:
- a) A real valued function defined on a sample space and taking real values is called a one-dimensional random variable
- b) A real valued function defined on a sample space and taking any values is called a one-dimensional random variable
- c) A real valued function defined on a sample space and taking any type of values is called two-dimensional random variable

- A real valued function defined on a sample space and taking real values is called twodimensional random variable
- 34. Choose the correct statement:
- a) If χ^2 is a chi-square variate with *n* degrees of freedom, then $\frac{\chi^2}{2}$ is a beta variate with parameter $\frac{n}{2}$.
- b) If χ^2 is a chi-square variate with *n* degrees of freedom, then $\frac{\chi^2}{2}$ is a beta variate with parameter *n*.
- c) If χ^2 is a chi-square variate with *n* degrees of freedom, then $\frac{\chi^2}{2}$ is a gamma variate with parameter $\frac{n}{2}$.
- d) If χ^2 is a chi-square variate with *n* degrees of freedom, then $\frac{\chi^2}{2}$ is a gamma variate with parameter *n*.
- 35. With the usual notations of systematic sampling, choose the correct relation:

a)
$$V_S: V_{Sy}: V_R \cong \frac{1}{n}: 1: n$$

b)
$$V_S: V_{Sy}: V_R \cong n: \frac{1}{n}: 1$$

c)
$$V_S: V_{Sy}: V_R \cong \frac{1}{n}: n:1$$

d)
$$V_S: V_{Sy}: V_R \cong 1: \frac{1}{n}: n$$

- 36. Choose the correct statement:
- a) The regression estimate is always more efficient than the ratio estimate unless regression of y on x is a straight line passing through the origin.
- b) The regression estimate is always more efficient than the ratio estimate unless regression of y on x is not a straight line passing through the origin.
- c) The regression estimate is always more efficient than the ratio estimate.
- d) The regression estimate is never efficient than the ratio estimate.
- 37. A statistic $I(x_1, x_2, ..., x_n)$ is said to be minimum variance unbiased estimator of a certain parameter θ if

a)
$$E(t) = \theta$$
 and $Var(t) > Var(t)$

- b) $E(t) = \theta$ and Var(t) < Var(t')
- c) $E(t) < \theta$ and Var(t) > Var(t)
- d) $E(t) < \theta$ and Var(t) < Var(t)

where t is any other unbiased estimator of θ

38. Choose the correct statement:

- Randomized Block diagram (R.B.D.) is not efficient than C.R.D. for most of the a) experimental work.
- R.B.D. is suitable for large number of treatments. b)
- In R.B.D. no restrictions are placed on the number of treatments. c)
- In R.B.D. statistical analysis is complicated. d)

39. Which of the following is an incorrect statement?

- a) Completely randomized design (C.R.D.) is useful in laboratory techniques.
- b) Completely randomized design (C.R.D.) is useful where the experimental material is
- c) Completely randomized design (C.R.D.) is useful in situations where an appreciable fraction of units is likely to be destroyed.
- d) None of the above situations.
- 40. Which of the following is true regarding poisson process?
- a) The distribution of arrivals is always poisson.
- b) The distribution of arrivals is always exponential.
- c) The distribution of inter arrival times is always poisson.
- d) The distribution of arrivals may not follow a particular distribution.

Strategic Company of the beauty

Key-I

- 1. d 2. c 3. b
- 4. c 5. a
- 6. c
- 7. d
- 8. d 9. -C 10. d
- 11. d
- 12. d 13. c
- 14. c
- 15. b 16. a
- 7. a
- .8. c 19. a
- 20. b
- 21. b
- 22. a
- 23. b 24. a
- 25. a.
- 26. d
- 27. d
- 28. a • 19. b
- 30. b
- 31. b
- 32: c
- 33. a
- 34. c
- 35. a
- 36. a
- 37. b
- 38. c
- 39. d 40. a