MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY DABWALI ROAD, BATHINDA. (Established by the State Government of Punjab vide Act No. 5 of 2015 u/s UGC Act 2(f)

PET- 2029 (Chemistry- Faculty of Natural Sciences)					
Roll No:	Date:				
Signature of the candidate					
1. An example of amphiprotic solvent is:					
a) C ₆ H ₆					
b) H ₂ O					
e) CHCl ₃					
d) HF					
2. The ligand system presents in Vitamin B ₁	12 complex:				
a) Phthalocyanine					
b) Crown ether					
c) Porphyrin d) Corrin					
d) Comi					
3. Which among the following is Ziggler-Na	atta catalyst?				
a) Al $(C_2H_5)_3$ + TiCl ₄	•				
b) $TiCl_4 + BF_3$					
c) B_2H_6					
d) SF ₄					
4. The number of possible isomers for [Ru (l	bpy) ₂ Cl ₂]; bpy is = 2, 2' – bipyridine:				
a) 2	••				
b) 3					
c) 4					
d) 5					
5. Which of the following alkyl halides would	undergo SN2 reaction most rapidly?				
a) CH ₃ CH ₂ F					
b) CH ₃ CH ₂ Cl					
c) CH ₃ CH ₂ Br					
d) CH ₃ CH ₂ I					
6. Al PO ₄ is isoelectronic with:					
a) SiO ₂					
b) Ga ₂ O ₃					
) Tl ₂ O ₃					
) GaPO ₄					

- 7. At constant volume and constant entropy, a process will be continuous if:
- a) ΔG<0b) ΔU<0
- 0) 411-0
- c) $\Delta H < 0$
- d) ΔA<0
- 8. At room temperature, which molecule has the maximum rotational entropy?
- a) O_2
- b) H₂
- c) D2
- d) N_2
- 9. In the most stable conformation of trans-1-t-butyl -3- methylcyclohexane, the substituents at C=1 and C-3, respectively are:
- a) Axial & Equatorial
- b) Equatorial & Axial
- c) Axial and Axial
- d) Equatorial & Equatorial
- 10. The order of carbonyl stretching frequency in the IR spectra of anhydride, ketone and amide are:
- a) anhydride> ketone > amide
- b) ketone> anhydride > amide
- c) amide> ketone > anhydride
- d) None of the above
- 11. Which of the technique would be used to detect a metabolite labeled with ²H?
- a) Infra red spectroscopy
- b) Ultra violet spectroscopy
- c) Nuclear magnetic resonance spectroscopy
- d) Mass spectroscopy
- 12. Addition of BH₃ to Carbon-Carbon double bond is:
- a) Markovnikov anti addition
- b) Anti-markovnikov syn addition
- c) Markovnikov syn addition
- d) Anti-markovnikov anti addition
- 13. The correct order of LMCT energies are:
- a) $VO_4^{3} > CrO_4^{3} > MnO4$
- b) $CrO_4^{3} > VO_4^{3} > MnO4^{\circ}$
- c) $CrO_4^{3} > MnO4^{*} > VO_4^{3}$
- d) None of the above
- 14. According to VSPER theory, the molecule with highest number of lone pairs and has a liner geometry is:

a) CO_2 b) I_3^- c) NO_2^- d) NO_2^+
 15. The molecular geometry of MoF₇ is best described as: a) Pentagonal bipyramidal b) Capped octahedral c) Capped trigonal prismatic d) Hexagonal pyramidal
16. In the mass spectrum of dichlorobenzene, the ratio of the peaks at m/z 146, 148 and 150, is: a) 1:1:1 b) 3:3:1 c) 9:6:1 d) 1:2:1
17. The term symbol for ground state of nitrogen atom is: a) ${}^4S_{3/2}$ b) 3P_0 c) 1P_1 d) ${}^4P_{3/2}$
 18. The symmetry point group of ethane in its staggered conformation is: a) D_{3h} b) D_{3d} c) C_{3v} d) S₆
19. In ¹⁹ F NMR spectrum of PF ₅ , the number of signals and multiplicity, at room temperature are: a) One, Singlet b) two, triplet c) One, doublet d) Two, Singlet
20. Superoxide dismutase contains the metal ions: a) Cu (II) & Zn (II) b) Fe (II) & Zn (II) c) Cu (II) & Pt (II) d) Zn (II) & Ni (II)
21. Among the following compounds, formyl anion equivalent is:a) Acetyleneb) Ethyl chloroformate

c) 1. 4- dithiane
d) Nitromethane
22. The anticancer agents among the following drugs are:
a) Camptothecin
b) Rinitidine c) Chlaraguin
c) Chloroquine d) Captopril
- Captopin
23. \ln^{57} Fe* Mossbauer experiment, source of 14.4 keV (3.48 × 10 ¹² MHz) is moved towards absorber at a velocity of
2.2 mm S ⁻¹ . The shift in frequency of the source for this sample is:
a) 35.5 MHz
b) 25.5 MHz
e) 75.5 MHz
d) 15.5 MHz
24. Bayer's process involves:
a) Synthesis of NaBH ₄ from borax
b) Synthesis of B ₂ H ₆ from NaBH ₄
c) Synthesis of NaBH ₄ from B ₂ H ₆
d) Synthesis of B ₃ N ₃ H ₆ from B ₂ H ₆
25. The coordination number and geometry of cerium in [Ce $(NO_3)_6$] ^{2⁻} are respectively:
a) 6 & octahedron
b) 8 & cubic c) 6 & trigonal prism
d) 12 & Icosahedron
26. "Carbon dating" application of radioisotopes, ¹⁴ C emits:
a) β- particle
b) α- particle
c) γ-radiation
d) Positron

27. For vibrational Raman spectrum of homonuclear diatomic molecule, the selection rule under harmonic

28. The vapour of a pure substance, when cooled under a pressure less than its triple-point pressure:

approximation is: a) $\Delta V=0$ only b) $\Delta V=\pm 1$ only c) $\Delta V=\pm 2$ only d) $\Delta V=0\pm 1$ only

a) Solidifies directly

c) Remains unchangedd) Liquefies then solidifies

b) Liquefies

29. During the additioa) Cascade processb) Step-growth process						
c) Addition reaction						
d) Free-radical chain re	eaction					
30. How many atoms a	are in an eleme	nt packed in a fcc	structure:			
b) 2						
c) 4						
d) 2						
			and B have the following characteristics:			
Experiment	A	В				
Mean	150 units	300 units				
Standard deviation	2 units	2 units				
It may be concluded the						
a) A is more precise the						
b) A is less precise the						
c) A & B are of same						
d) Can't be assessed	for A & B					
δ 2.35 ppm and δ 2.3 a) 3 Hz b) 9 Hz c) 6 Hz d) 12 Hz	ex that exhibits	ipling constant (J)	apound exhibited a doublet. The two lines of to value is: doublet in its ³¹ P NMR spectrum, identify from the control of the			
a) mer – [IrCl ₃ (PPh ₃)3					
b) fac – [IrCl₃ (PPh₃)	3]					
c) [IrCl; (PPh3)3]						
d) trans – [IrCl (Co) ($PPh_3)_2$					
	in - allowed lig	and filed transition	n for octahedral Ni (II) complex with			
³ A _{2g} ground state is:						
a) Two						
b) Three						
e) One						
d) Four						
35. The number of mic	rostates for d ³	electron configura	ntion is:			
a) 14×6^{3}						
1						

b) 21 × 6

c) 7×6^{2}

d) 28×6^{3}

36. The number average molar mass (M_n) and weight average molar mass (M_w) of a polymer are obtained respectively by:

a) Osmometry & light scattering experiments

b) Viscosity & osmometry

c) Osmometry & sedimentation measurements

d) Osmometry & viscosity measurements

37. The major product formed when (3R, 4S)-3, 4- dimethylhexa- 1, 5- diene is heated at 240 °C is:

a) (2Z, 6Z)-octa-2, 6- diene

b) (2E, 6E)-octa- 2, 6- diene

c) (2E, 6Z)-octa- 2, 6- diene

d) (3Z, 5E)-octa-3, 5- diene

38. The correct reagent combination for the following conversion is:

a) (i) Me₃SiCH₂OMe, BuLi: (ii) H₃O⁺; (iii) NaBH₄, MeOH

b) (i) Ph₃P⁺CH₂MeCl, BuLi ;(ii) H₃O⁺;(iii) NaBH₄, MeOH

c) (i) NH2NHTs; (ii) NaOEt; (iii) ClCOOEt

d) (i) NH2NHTs; (ii) 2 eq. BuLi (iii) HCHO

39. Which of the following shows the highest solubility in hot concentrated aqueous NaOH?

a) La (OH)₃

b) Lu (OH)₃

c) Nd (OH)₃

d) Sm (OH)₃

40. Reactivity order of pyrrole, pyridine, and indole with respect to electrophilic aromatic substitution is:

a) indole > pyrrole > pyridine

b) pyrrole > indole > pyridine

c) pyridine > pyrrole > indole

d) None of the above

Answer key of Chemistry Question papers for Ph.D entrance test 2020.

Answer key of	Chemistr
1.	b
2.	d
3.	a
2. 3. 4. 5. 5.	b
5.	d
6.	a
6. 7. 8. 9.	b
8.	a
9.	b
10.	a
11.	d
12.	c
13.	a
14.	b
15.	b
16.	c
17.	a
18.	b
19.	c
20.	a
20. 21.	d
22.	a
23.	b
24.	a
25.	d
26.	a
27.	b
28.	a
29.	d
30.	c
21	b
31.	
32.	d
33.	a
34.	b
35.	c a
36. 37.	a
37.	c d
38.	
39.	b
40.	b