MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA (Pb) - 151001 (State Univ. Estb by Punjab Govt. Act No. 5 (2015) and Approved u/s 2(f) & 12(B) of the UGC Act of 1956) ## Discipline: <u>TEXTILE ENGINEERING</u> (Faculty of Engineering & Technology) ### 3rd PhD ENTRANCE TEST (PET-2018) | | | 0 1 | IID LIVIIV | THOL ILOI | 1 1-2010 | | |---|--|------------------------|-----------------------------|-----------------|---------------------------------|----| | | Roll No: | Date: 3 rd | June 2018 | Signature of th | e Candidate | | | 1. Wet spinning | technique is cor | mmercially used to p | oroduce filan | nent yarn of: | | | | (a) Polypropy | /lene | (b) Polyester | (c) Ny | lon 66 | (d) Acrylic | | | 2. Fibre individu | alization in a car | d will increase by ir | creasing: | | • | | | (a) Licker-in (c) Licker-in s | to cylinder settin
speed | , |) Doffer spe
Cylinder sp | | | | | 3. Compared to cotton yarns | the spinning of would: | finer cotton yarns, t | he preferred | rotor diameter | or the production of very coars | se | | (a) Be highe (b) Be lower (c) Remain t (d) Change | | re strength | | | | | | 4. Increase in ta | per angle on sec | ctional warping drun | n will normal | ly require: | | | | (b) Lower w
(c) Increase | varping speed
varping speed
e in traverse spe
e in traverse spe | | | | 4010 | | | 5. For producing | fabric of low int | rinsic weight, the typ | oe of nonwo | ven fabric manu | facturing technique is: | | | (a) Melt blov | wn , | (b) Spunlace | (c) Ne | edle punched | (d) Stitch bonded | | | 6. The highest w | ashing fastness | in a dyed cotton fal | oric would be | obtained if the | dye-fibre bond is: | | | (a) Ionic | | (b) Hydrogen | Let Co | valent | (d) Van der Waal's force | | | 7. Crease resist | finishing of cotto | n fabric does not le | ad to: | | 1 | | | (b) Increase | on in tensile stre
in dimensional
in moisture reg
in bending leng | stability
ain | | | | | | 8. Nep count in a | cotton fibre sar | nple is measured by | / : | | | | | (b) HVI
(c) Uster tes | ster | | | | NGH PUNJAB | | (d) Stelometer | [a]: H | leat setting in | creases the | on [a] and reason [r] edimensional stabilities a result of heating | y of synthetic f | | opriate answer | | |-------------------|--|--|---|--------------------|-----------------|--------------------------------|-----------------| | (c) | [a] is right [a] is right [a] is wrong [a] is wrong [a] is wrong [a] | r] is right
[r] is wrong | | | | | | | 10. In th | ne context of e | effluent disc | harge, BOD means | | | | | | (b) | Bio-oxidative
Bio oxygen di
Biological oxy
Bacteria obse | stress
/gen demar | nd | | | | | | [a]: | Controlled red | duction trea | ion [a] and reason [r
tments are commerc
sulphide bonds, whic | ially used for s | hrink resist fi | nishing of wool | | | (b) | [a] is right [
[a] is right [
[a] is wrong
[a] is wrong | r] is right
[r] is wrong | | | | | , | | | | | ilibrium dye uptake a
lecreases because: | and dyeing tem | perature goe | s through a max | imum. After the | | (a)
(b)
(c) | Pressure in Saturation | the dye bavalue is rea | th increases
ched | | | | 10) | | | d is the diam roportional to: | | te of air flow through | gh a fibre plug | during fibre | fineness meas | urement will be | | (a) | d | \ | (b) d ² | (c) d ⁴ | 1 | (d) $1/d^2$ | | | 14. The | e number of no
at there is no r | eps in a car
neps in an a | rded web follows Poi
area of 645 cm² is: | sson distributio | on with a mea | an of 100 per m ² . | The probability | | Va | e - 6.45 | | (b) e 6.45 | (c) e^{-645} | | (d) e^{645} | | | 15. Fab | ric thickness i | s related to | ; | | | | | | (b) | Sum of war
Sum of crim
Sum of yarr
Sum of war | np height
n diameter a | and crimp height | | | | | | | g, Tm, and To
en the correct | | the glass transition, is: | melting and cry | stallization te | emperature, resp | pectively. | | · (at | Tg < Tc < Tr | m | (b) Tg < Tm < Tc | (c) Tc < 7 | g < Tm | (d) $Tm < Tg$ | < Tc | | 17. A loom is designed to ruinsertion rate in m/min of | un at 500 ppm. If the fall
on the loom will be: | oric width is 2.5 m and we | eft crimp on the loom is 8%, the weft | | | |---|--|-----------------------------|---------------------------------------|--|--| | (a) 1000 | (b) 1250 | (6) 1350 | (d) 1450 | | | | 18. CLASSIMAT faults which | ch has highest possibilit | y of causing an end brea | k during further processing is: | | | | √a) D4 | (b) G | (c) H2 | (d) I2 | | | | 19. Limitation in package siz | ze in Precision winding | is mainly due to: | | | | | (b) Tension level in the (c) Patterning in package (d) Energy consumption | threads increases
ge | e build of the package | | | | | 20. Jigger CANNOT be use | ed for: | | | | | | (a) Dyeing | (b) Printing | (c) Washing | (d) Scouring | | | | 21. For a two fold increase in | n reed width, the work of | done per pick will be incre | eased by: | | | | (a) 2-times | √6) 4-times | (c) 8-times | (d) 16-times | | | | 22. In connection with bursti | ng strength, higher valu | ie of bursting strength car | n be attributed to: | | | | P: Higher warp and weft
Q: Higher warp and weft
R: Equal extensions in v
S: Higher crimp removal | t yarn elongation
varp and weft directions | ructure | | | | | (a) P, Q, S | (b) P, R, S | (c) P, Q, R | (d) Q, R, S * | | | | 23. Moisture wicking is maxi | mum in the fabric made | out of following material: | | | | | (a) Cotton | (b) Wool | (c) Blend of polyes | ter and cotton (d) Polyester | | | | 24. Sley velocity in m/sec at | the front center of a loo | m running at 300 rpm is: | | | | | Va) 0 | (b) 15 | (c) 30 | (d) 45 | | | | 25. Milling is associated with | the processing of: | | | | | | (a) Cotton fabric | (b) Silk fabric | (c) Jute fabric | (d) Wool fabric | | | | 26. Dyed wool fabric standa | rds are used for the eva | aluation of: | | | | | (a) Wash fastness | (b) Perspiration fas | stness (c) Sublimation f | astness (d) Light fastness | | | | 27. Match the items in Group | o I with those in Group | II. | , | | | | Group I | | Group II | | | | | P: Ring spinning* Q: Rotor spinning R: Air-vortex spinning S: Air-jet spinning | Real twist, mechanical twisting, low fibre migration, aerodynamic drafting False twist, aerodynamic twisting, low fibre migration, roller drafting Real twist, mechanical twisting, high fibre migration, roller drafting Real twist, aerodynamic twisting, high fibre migration, roller drafting | | | | | | (a) P-3, Q-2, R-1, S-4 (b) F | P-4, Q-3, R-2, S-1 | P-3, Q-1, R-4, S-2 (d) | P-3, Q-2, R-4, S-1 | | | 3 | Page | 28. Adipic acid is a monomer for the production of: | | | |--|---------------------------|-------------------------| | (a) Poly(ethylene terephthalate) (b) Nylon 66 | (c) Nylon 64 (d) N | lylon 610 | | 29. In melt spinning line, the melting of solid polymer at | nd its homogenization ta | kes place in: | | (a) Manifold (b) Extruder (c) M | etering pump (d) C | Quench duct | | 30. In cotton yarn sizing, the starch primarily acts as: | | | | (c) A Binding agent (b) Lubricating agent | ntistatic agent (d) A | Antimicrobial agent | | 31. The correct sequence of unit operations employed | in production of viscose | rayon is: | | (a) Ageing - Steeping - Xanthation - Ripening (b) Ageing - Steeping - Ripening - Xanthation (c) Steeping - Ageing - Ripening - Xanthation (d) Steeping - Ageing - Xanthation - Ripening | | | | 32. The limitation of dobby shedding to increase the no | umber of heald shaft is n | nainly due to: | | (a) Warp strain increases (b) Size of the dobby increases (c) Energy consumption increases (d) Open shedding not possible | | | | 33. In which fabric construction, constituent thread ar | chor more rigidly at cros | ss over points: | | (a) 5 end sateen fabric (b) Double jersey weft knitted fabric (c) Rachel warp knitted construction Leno fabric | | | | 34. For substitution of tissue paper, the type of nonw | oven fabric which is cons | sidered to be the best: | | Spunlace (b) Spunbonded | (c) Needle punched | (d) Meltblown | | 35. Bicomponent fibre is suitable for manufacturing | | | | (a) Melt blown (b) Spunlace | (c) Needle punched | (d) Spunbonded | | 36. The RKM value of a yarn of 50 Nm and breaking | load of 400 gf will be: | | | (a) 50 (b) 20 | (c) 40 | (d) none of the above | | 37. Prewetting of yarn before sizing leads to: | | | | (c) Increased hairiness (b) Increased (d) None of a | d size add-on
above | | | 38. The efficacy of the wash-n-wear treatment can be | e estimated by measurin | | | (a) Bending length (b) Tensile strength | (c) Dye uptake | (a) Crease recovery | 39. Match the property from Group I with the characterization technique from Group II. #### Group I - P: Spherulite size - Q: Degradation temperature - R: Crystalline orientation - S: Melting temperature - P-2, Q-3, R-1, S-4 - P-2, Q-3, R-4, S-1 - P-1, Q-4, R-2, S-3 - P-2, Q-1, R-3, S-4 ### Group II - 1: Optical microscopy - 2: X-ray diffraction - 3: Differential scanning calorimetry - 4: Thermogravimetric analysis 40. Formability of fabric can determine - Degree of stretchability of fabric (a) - (b) Tear strength of fabric - Fabric friction (c) - Degree of tensile compression before buckling