MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA (Pb) - 151001

(State Univ. Estb by Punjab Govt. Act No. 5 (2015) and Approved u/s 2(f) & 12(B) of the UGC Act of 1956)

Discipline: ELECTRONICS AND COMMUNICATIONS ENGINEERING

(Faculty of Engineering & Technology)

3rd PhD ENTRANCE TEST (PET-2018)

Roll No:	Date: 3rd June 2018	Signature of the Candidate
----------	---------------------	----------------------------

- 1. In a series RL circuit with constant voltage applied at t = 0 by closing of a switch, the voltage appearing across L may be expressed by:
 - (a) Positive exponential function
 - (b) Negative exponential function
 - (c) Sine function
 - (d) Straight line
- 2. In a tank circuit, the impedance under the condition of resonance to occur at all frequencies is:

$$(a)'Z = \sqrt{(L/C)}$$

(b)
$$Z = \sqrt{(LC)}$$

(a)
$$Z = \sqrt{(L/C)}$$
 (b) $Z = \sqrt{(LC)}$ (c) $Z = (1/2\pi) \sqrt{(L/C)}$

(d)
$$Z = \sqrt{(\omega L/C)}$$

- 3. A discrete-time sinusoid is periodic only if its frequency is a/an:
- (a) Prime number (b) Integer number $\stackrel{?}{\cdot}$ (c) Integer multiple of 2π
- (a) Rational number
- 4. The system described by the input-output equation y(n) = nx(n) is:
 - (a) Time variant
- (b) Time invariant
- (c) Linear

- (d) Non-linear
- 5. Figure illustrate a system with input signal x(n). The output y(n) is:
 - (a) y(n) = x(n)
 - (b) y(n) = x(n+1)
 - (c) $y(n) = x(n^2)$ y(n) = x(n-1)

x(n)

- 6. The energy of a signal x(n) is given by:
 - (a) $E = \int_{n=-\infty}^{\infty} |x(n)|^{n/2}$
- $E = \int_{n=-\infty}^{\infty} |x(n)|^2$
- (c) $E = \int_{n=-\infty}^{\infty} |x(n)|^{1/2}$
- (d) $E = \int_{n=-\infty}^{\infty} |x(n)|^n$
- 7. In regard to the energy (E) and average power (P) of a discrete time signal, read the following statements:
 - 1. If E is finite, P is zero
 - If E is infinite, P is finite 11.
 - If E is infinite, P is infinite 111.
 - If E is infinite, P may be either finite or infinite. IV.
 - Only I & II are correct. (a)
- Only I, & III are correct
- (c) Only I, II, & IV are correct

Only I & IV are correct

- 8. The Law of Junction states that:
 - (a) For a forward bias (V< V_T) at room temperature, hole concentration at the junction in the n side is greatly increased over thermal equilibrium value
 - (b) For a forward bias(V>>V_T) at room temperature, hole concentration at the junction in the p side is greatly increased over thermal equilibrium value
 - (c) For a forward bias (V< V_T) at room temperature, hole concentration at the junction in the p side in greatly increased over thermal equilibrium value
 - For a forward bias(V>>V_T) at room temperature, hole concentration at the junction in the n side is greatly increased over the thermal equilibrium value
- 9. Operating voltage range of LEDs is:
 - (a) 10-15 V
- (b) 4-10 V
- (c) 1-10 mV
- (d) 1.7-3.3V

- 10. Schottky diode in a Schottky transistor:
 - (a) Reduces storage delay time
 - (b) Is connected between base and emitter
 - (c) Increases stability
 - (d) Increases gain
- 11. For an amplifier with 1 MHz band-pass, the rise time is:
 - (a) $0.01 \, \mu s$
- (b) 0.25 μs
- (c) 0.35 µs
- (d) $1.0 \mu s$

- 12. In regard to the frequency stability of an oscillator:
 - (a) Frequency stability increases as dθ/dω increases
 - (b) Frequency stability increases as dθ/dω decreases
 - (c) Frequency stability is independent of $d\theta/d\omega$
 - (d) None of the above
- 13. Skin effect in copper interconnect:
 - Increases the resistance of the conductor with frequency
 - (b) Decrease the resistance of the conductor with frequency
 - (c) Does not affect the resistance of the conductor with frequency
 - (d) None of the above
- 14. In multistage amplifiers:
 - (a) Zeros in the Bode plot determine both the upper and lower 3-dB frequencies
 - (b) Zeros and Poles in the Bode plot determine respectively upper and lower 3-dB frequencies
 - Poles in the Bode plot determine both the upper and lower 3-dB frequencies
 - (d) None of the above
- 15. In regard to low threshold voltage in MOSFET, the following is/are correct:
 - (a) It requires high power supply voltage
 - It allows the use of a small power supply voltage
 - (c) It results in larger switching time
 - (d) All the above are correct

- 16. CE configuration in BJT is capable of:(a) Voltage gain greater than unity
 - (b) Current gain greater than unity

 Both voltage gain and current gain greater than unity
 - (d) None of the above
- 47 A . DO is serviced and to
- 17. A+BC is equivalent to:
 - (a) A+B
- (b) A+C
- (e) (A+B)(A+C)
- (d) (AC+B)

- 18. Regarding virtual memory, the following is not true:
 - (a) Translation of virtual address to physical address is done by MMU
 - (b) MMU uses page table to map virtual pages to page frames
 - (c) Typically, if physical memory is 64 KB, virtual memory may be 256 KB
 - None of the above
- 19. In wired-AND applications, open collector gates are used:
 - (a) To avoid increased power dissipation in the on-state
 - (b) To avoid increased temperature in the on-state
 - (c) To increase power dissipation in off-state
 - (d) To decrease power dissipation in off-state
- 20. In regard to TTL, the following statement(s) is/are correct:
 - (a) It uses a multiple-emitter transistor
 - (b) It has the topology of DTL
 - (c) It is the fastest saturating logic
 - (d) All of the above
- 21. A Darlington emitter follower is used in the output of a TTL gate to:
 - (a) Increase its IoL
 - (b) Reduce its I_{OH}
 - Increase its speed
 - (d) Reduce its power dissipation
- 22. A 2-bit binary multiplier can be implemented using:
 - (a) 2-input AND gates only
 - (b) 2-input XOR and 4-input AND gates only
 - (c) Two 2-input NOR gates and one XOR gate only
 - (d) XOR gates and shift registers
- 23. Lag compensation:
 - (a) Inserts an extra zero into the transfer gain at lower frequency than the existing poles
 - Inserts an extra pole into the transfer gain at lower frequency than the existing poles
 - (c) Inserts an extra pole into the transfer gain at higher frequency than the existing poles
 - (d) Inserts an extra zero into the transfer gain at higher frequency than the existing poles

24.	The gain margin of certain feedback system is 20 dB, the Nyquist plot will cross the negative real axis at the point:								
	(a)	s = -0.05	(b) $s = -0.2$	(e) s = -0.1	(d) $s = -0.6$				
25.	Consider a control system in which a step function is applied as input and the output remains below certain threshold for all the time. The system is:								
	(a)	Stable	(b) Unstable	(c) Always unstable	Not necessarily	stable			
26.	If impulse response of an LTI system is a unit step function, the transfer function is:								
	(a)	S	(b) 1/s	(c) 1	(d) 1/s ²				
27.	A carrier is simultaneously modulated by two sine waves with the modulation indices 0.3 and 0.4. The resultant modulation index is:								
	(a)	0.1	(b) 0.5	(c) 0.7	(d) 0.9	₹			
28.	The following code word of a coding scheme will be the decoded symbol, if the received sequence over a BSC is 111010 and ML decoder is used:								
	(a)	000000	(6) 101010	(c) 010101	(d) 111111	•			
29.	The envelope of the sum of two quadrature Gaussian noise signal obeys:								
(a) Normal distribution(b) Lognormal distribution(c) Passion distributionAd) Rayleigh distribution									
30.	The	e IEEE 802.15.3	Bc is:			*			
,	 (a) A standard for outdoor cellular wireless networks (b) A standard for local area sensor networks (c) A standard for indoor short range applications (d) A standard for metropolitan area networks 								
31.	To prevent overloading in an IF amplifier in a receiver, the following is used:								
,		Variable selectivariable sensitivariable							

(c) Squelch

(d) Double conversion

32. In Poisson distribution, the mean:

(a) Is equal to the variance (b) Is greater than variance

(c) Is less than variance

(d) None of these

	behaves as:				
,	(a) Series resonant circle (b) Parallel resonant circle (c) Series or parallel resonant (d) None of these		he type of the load conne	ected	
36.	The intrinsic impedance	of a conductor is given by	r:		
,	(α) √(ωμ/σ)∠45°	(b) √(ωμσ)∠45°	(c) √(ω/μσ)∠45°	(d) $\sqrt{(\omega\mu/\sigma)}\angle90^\circ$	
37.	The alloy used in the ligh				
	(a) GaAlAs	(b) InGaAsP	(c) Silicon	(d) InGaAs	
38.	The antenna diameter in be increased by a factor	n a radar system is increa			
	(a) 2	Vb 4	(c) 8	(d) √2	
39.	The frequency range of r	mm waves is:			
	(a) 3 GHz – 30 GHz (b) 30 GHz – 300 GHz (c) 1GHz – 100 GHz (d) 10 GHz – 300 GHz				
10.	The velocity of propagati	ion in any transmission lin	e is given by:		
	(a) $v = \frac{1}{\pi\sqrt{(LC)}}$ (b) $v = \frac{1}{2\pi\sqrt{(LC)}}$ (c) $v = \frac{1}{\sqrt{(L/C)}}$ (d) $v = \frac{1}{\sqrt{(LC)}}$				
; I	Page			BANG BANG BANG BANG BANG BANG BANG BANG	NJAS TECHNICAL UNIVERSITY
	, u g C				

33. Consider an example of the rolling of a dice with k = 1:6. Assign to the event $A_k(t)$ a random process

35. The short circuited transmission line when close to an odd multiple of a quarter wavelength long

(c) $a^2/3$

(d) zero

function $x_k(t) = a \cos k\omega_0 t$. The variance is:

34. A static electric field in an charge free region is:

(b) Solenoidal and irrotational (b) Solenoidal and rotational

(c) Non-Solenoidal and irrotational(d) Non-Solenoidal and rotational

(a) a/2

(b) a²/2