ELECTRONICS & COMMUNICATION ENGINEERING

Marks: 100

1

В

Time: 2 hours

NOTE:

- (i) Attempt all questions. Each question carries one mark. There will be NO negative marking.
- (ii) **There are 40 questions in this booklet.** Against each question four alternative choices (A), (B), (C) and (D) are given, out of which only one is correct. Indicate your choice of answer by Darkening the suitable circle with **Black/Blue Ball Pen** in the OMR answer sheet supplied to you separately.

The steady state error of the control system with input r(t) and open loop transfer function G(s)H(s) is given by A R(s) C $s^2 R(s)$

$$ess = \lim_{s \to 0} \frac{R(s)}{1 + G(s)H(s)}$$
 C $ess = \lim_{s \to 0} \frac{s^2 R(s)}{1 + G(s)H(s)}$

 $ess = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)H(s)}$ D $ess = \lim_{s \to 0} \frac{s^3R(s)}{1 + G(s)H(s)}$

- 2 The open-loop transfer function of control system is given by $G(s)H(s) = \frac{K}{s(s+3)(s+5)}$. The angels of Asymptotes of root locus are given by
 - A 60° , 180° , 300° C 30° , 60° , 90°

 B 90° , 180° , 270° D 60° , 120° , 180°

3

- Nyquist Criteria for stability of control system is given by
 - A
 N=P-Z
 C
 P=N-Z

 B
 Z=N-P
 D
 N=P

4

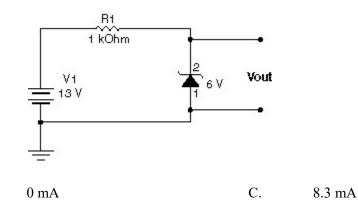
A system is represented by differential equation

 $M\frac{d^2x}{dt^2} + F\frac{dx}{dt} + Kx = u(t)$ The transfer function relating X(s) and u(s) is

A
$$\frac{M}{Ms^2 + Fs + K}$$
 C $\frac{K}{Ms^2 + Fs + K}$
B $\frac{F}{Ms^2 + Fs + K}$ D $\frac{1}{Ms^2 + Fs + K}$

5

At gain cross over frequency 150 rad/sec. $G(j\omega)H(j\omega)=-200$ degree the phase margin is given by


٨ຶ	-200	v	С	-20
В	-180		D	150

6		= 100 %, the damping ratio is	С	0.5
	A	1	C	0.5
	В	0	D	infinity
7	The exp	pression $\nabla XE = -\frac{\partial B}{\partial t}$ is for		
	А	Gauss Divergence Law	С	Faraday's Law
	В	Ampere's Law	D	None of these
8	50 ohm	WR of a transmission line having C and terminated by a resistance of 7	5 ohm is g	iven by
	A	50	С	75
	В	1.5	D	2.5
9	The in	trinsic impedance of lossy dielect	tric mediu	m is given by
	А	jωμ	С	jωμ
		σ		$\sqrt{\frac{j\omega\mu}{\sigma+j\omega\varepsilon}}$
	В	$\frac{j\omega\mu}{\sigma}$ $\sqrt{\frac{\sigma+j\omega\varepsilon}{j\omega\mu}}$	D	$\underline{j\omega\varepsilon}$
10			da in naa	μ
10		off frequency for dominating mo nsions 4 cm X 2cm is given by	de in rec	tangular wave guide with
	А	3GHz	С	3.55 GHz
	В	3.75 GHz	D	3.45 GHz
11	Minim	um number of NAND gates re	equired to	o implement the Boolean
		n $A + AB + ABC$ is equal to	0	0
	A	0	С	2
	В	3	D	5
		nany FFs are required to bu 0 to1023?	uild a bir	nary counter circuit to
12	A	1023	С	0
	В	1024	D	10

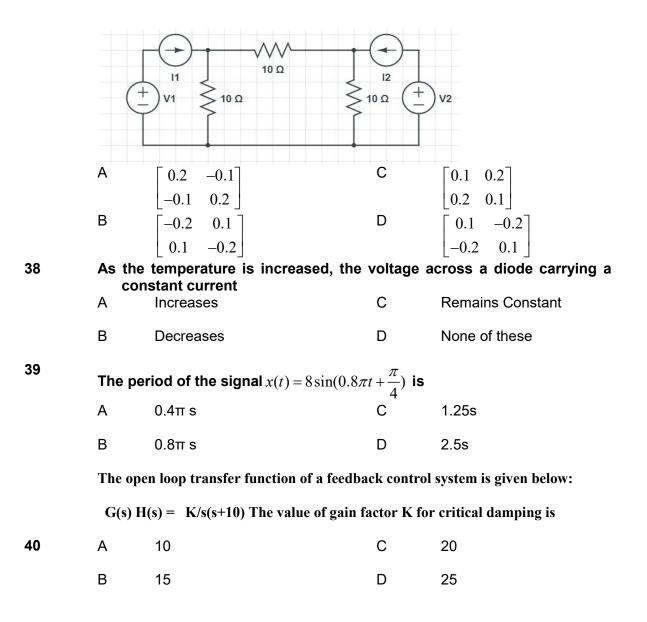
13 For the given logic families ,correct order of their increasing noise margin is

	A RTL	., ECL , MOS , DTL	C EC	L , RTL , MOS , DTL
	B RTL	, ECL , DTL , MOS	D EC	L , RTL , DTL , MOS
14	The ful A	II scale output of a 10-bit DAC is 5 mV	6 5 V. The C	resolution is 2.5 mV
	В	10 mV	D	20 mV
15	The ad A	dress bus width of a memory of 10 bits	f size 102 C	4 X 8 bits is 8 bits
	В	13 bits	D	18 bits
16	The dis	stinct Eigen's values of the Matr	ix $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$ are
	A	0 and 1	С	1 and 2
	В	1 and -1	D	0 and 2
17	-	and z are positive real num $x^{2} + 27z^{2}$ where $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$ is	bers,th	ey the minimum value of
	А	108	С	405
	В	216	D	1048
18	Let y l	be the solution of the initial val	ue proble	em $\frac{dy}{dx} = y^2 + x$; $y(0) = 1$
	Using '	Taylor Series of order 2 with th f y(0.1) is		
	A	1.315	С	1.115
	В	1.415	D	1.215
19		olving the equation $x^2 - 3x + 1 = 0$ the initial guess of a root as 1, the	0	-
	A	1.5	С	0.5
	В	1	D	0
20	Let I =	$\oint_c (2x^2 + y^2) dx + e^y dy$, where c is	s the bou	ndary (oriented anti -clock

wise) of the region in the first quadrant by y=0, $x^2 + y^2 = 1$ and x = 0, The value of I is А -1 С $\frac{2}{3}$ D В $-\frac{2}{3}$ The current through the zener diode in the given circuit is 2.2K V7=3.3V +10V R₇=100Ώ А 33 mA С 3.3 mA В 2 mA D 0 mA22 The Boolean Expression $Y = (A + B)(\overline{A} + C)$ is equal to $AC + \overline{A}B$ А С $\overline{A}B + BC + A\overline{B}C$ $AC + \overline{A}B + BC$ D В Above all 23 When transistors are used in digital circuits they usually operate in the А Breakdown region C. Active region В Linear region D Saturation and cut-off regions 24 What is the current through the zener diode?

21

А


	В	7 mA	D	13 MA
25	Which	n of the following improveme	nts is (are) a result of the negative
	fee	edback in a circuit?		
	А	Lower output impedance	С	More linear operation
	В	Reduced noise	D	All of the above
26	-	amp has an open-loop gain of 75,(e open-loop gain is given by)00 and a cu	toff frequency of 100 Hz. At 1
	A	10dB	С	20 dB
	В	6dB	D	3 dB
27	Invers	e Fourier transform is given by	v	
	A	$x(t) = \frac{1}{\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} d\omega$	C	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} d\omega$
	В	$x(t) = \frac{1}{\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} dt$	D	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} dt$
28	Y(t)=1	0x(t)+5 is		
	A	À linear system	С	Time Invariant System
	В	Dynamic system	D	Non linear system
29	The N	yquist rate for a signal $x(t) = 5$	$\cos(1000\pi)$	t
	А	2000Hz	С	1000Hz
	В	1200Hz	D	5000Hz
30		s capacity of noisy channel, (t to noise ratio, then	oits/s), ðf is	bandwidth Hz and S/N is
	A	$C = (\delta f) \log_2 \left(1 + \frac{S}{N} \right)$	С	$C = \log_2 \left(1 + \frac{S}{N}\right)$
	_	(1 N)	_	
	В	$C = 2(\delta f) \log_2 \left(1 + \frac{S}{N}\right)$	D	$C = (\delta f) \log_{10} \left(1 + \frac{S}{N} \right)$
31	White Gau	ssian noise is passed throug	h a linear	narrow band filter. The
	- ·	density function of the envelop		-
	A	Uniform	С	Gaussian

- B Poisson D Rayleigh
- **32** A memory less source emits n symbols each with a probability p. The entropy of the source as a function of n

	А	increases	С	increases as n
	В	decreases as log n	D	increases as n log n
33	by a ca freque change A	lio signal (say from 50 Hz to 1000 arrier having a frequency of 106 b ncy translation) and final (after f e in frequency from one band edg 200 and 1.01	Hz. The Frequenc ge to the C	values of initial (without y translation) fractional other are 200 and 100.1
	В	200 and 10.01	D	200 and 200
34		cal oscillator of a broadcast rece n the incoming frequency	eiver is t	uned to a frequency higher
	A	To help the image frequency rejection	inte	cause otherwise an ermediate frequency could t be produced
	В	To permit easier tracking	D To	all adequate frequency verage without switching
35		imum transfer theorem when maxi value of efficiency becomes		0 0
	А	50%	С	infinite
	В	100%	D	zero
	The tim	e constant of network shown in Fig	. is	
36		SW1 + 10 V R	2R =	c
	А	2RC	С	RC/2
	В	3RC	D	2RC/3

37

For two port network shown in fig. the admittance matrix is

ECE

Answer Keys

1	В	11	А	21	В	31	D
2	А	12	D	22	D	32	А
3	А	13	В	23	D	33	А
4	D	14	А	24	В	34	D
5	С	15	А	25	D	35	А
6	В	16	D	26	С	36	D
7	С	17	В	27	С	37	А
8	В	18	С	28	D	38	А
9	С	19	D	29	С	39	D
10	В	20	В	30	А	40	D